infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers.

The sources of drinking water (both tap and bottled water) include rivers, streams, lakes, ponds, reservoirs, springs and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

Contaminants, that may be present in source water include:

- **Microbial contaminants**, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations and wildlife.
- **Inorganic contaminants**, such as salts and metals, which can be naturally-occurring or result from urban stormwater runoff, industrial or domestic discharges, oil and gas production, mining or farming.
- **Pesticides and herbicides**, which may come from a variety of sources such as agriculture, urban stormwater runoff and residential uses.
- **Organic chemical contaminants**, including synthetic and volatile organic chemicals, which are byproducts of industrial processes and petroleum production, and can also come from gas stations, urban stormwater runoff and septic systems.
- **Radioactive contaminants**, which can be naturally occurring or be the result of oil and gas production and mining activities.

In order to ensure that tap water is safe to drink, EPA prescribes regulations which limit the amount of certain contaminants in water provided by public water systems. Food and Drug Administration regulations establish limits for contaminants in bottled water which must provide the same protection for public health.
fement of suspended material that is found in water. We monitor it because it's a good indicator of the effectiveness of our filtration system.

Definitions

DEFINITIONS

- **DEFINITIONS**

 - **Maximum Contaminant Level (MCL)** - The "Maximum allowed" (MCL) is the highest level of contaminant that is allowed in drinking water. MCL's are set close to the MCLG's as feasible using the best available treatment technology.

 - **Action Level (AL)** - The concentration of a contaminant, which if exceeded, triggers treatment or other requirements, which a water system must follow.

 - **Maximum Contaminant Level Goal (MCLG)** - The "Goal" (MCLG) is the level of a contaminant in drinking water below, which there is no known or expected risk to health. MCLG's allow for a margin of safety.

- **Treatment Technique (TT)** - A treatment technique is a required process intended to reduce the level of a contaminant in drinking water.

- **Chloride**

- **Sodium**

- **Radium 226 & 228 (2002)**

- **Selenium (2001)**

- **Barium (2001)**

- **Nitrate**

- **Fluoride**

- **Weekly % meeting the MCL**

- **Turbidity**

- **Copper**

- **Lead**

- **Unregulated Monitoring** - Unregulated contaminants are those for which EPA has not established drinking water standards. Monitoring helps EPA to determine where these contaminants occur and whether it needs to regulate those contaminants.

Regulated and Unregulated Monitoring at the Treatment Plant and Distribution System

Talon Coliform Bacteria

- **Violation Yes/No**
- **Highest Level Detected**
- **Unit Measurement**
- **Range of Detection**
- **MCL**
- **MCLG**
- **Likely Source of Contamination**

- **Turbidity**

- **Lowest monthly % meeting the turbidity limit<100%**

- **Fluoride**

- **Nitrate**

- **Alpha emitters (2002)**

- **Arsenic (2007)**

- **Barium (2001)**

- **Selenium (2001)**

- **Radium 226 & 228 (2002)**

- **Sodium**

- **Chlorine Residuals**

- **Chloride**

Regulated Monitoring in the Distribution System

- **Talon Trihalomethanes**

- **Haloacetic Acids (HAA5)**

Important Information About Your Drinking Water

Monitoring Requirements Not Met For Northwest Ottawa Water Treatment Plant

The Northwest Ottawa Water Treatment Plant is required to monitor your drinking water for specific contaminants on a regular basis. Results of regular monitoring are an indicator of whether or not our drinking water meets health standards. During January of 2008, plant staff did not complete all required continuous online turbidity monitoring and therefore cannot be sure of the quality of drinking water during that time.

What should I do?

There is nothing you need to do at this time. This was not an emergency.

What happened? What is being done?

On January 8, 2008 a power outage caused the loss of data from a dedicated computer system for continuous online turbidity monitoring (which collects turbidity samples every 15 minutes). When turbidimeters and data collecting systems fail, plant staff are required to collect "grab" samples at least every 4 hours while the filter is in service. Plant staff were unaware that the turbidimeter data was not being saved. Approximately 10 hours of turbidity data was lost on January 8th. Plant staff failed to collect "grab" samples from the individual filters every four hours during this time period. However, the combined filter effluent and tap water leaving the water plant was monitored every 4 hours for the entire duration and at no time during the 10 hour period did the turbidity exceed drinking water standards. For more information, please contact Mr. Joseph VandeStel, Water Facilities Manager, 519 Washington, Grand Haven, MI 49417 at 616-847-3488, or the Michigan Department of Environmental Quality at 616-356-0271.